класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой -COOH аминогруппу -NH
2. В зависимости от положения аминогруппы относительно карбоксильной группы различают α-, β-, γ
- и др. А. А. играют очень большую роль в жизни организмов, т. к. все белковые вещества построены из А. Все
Белки при полном гидролизе (расщеплении с присоединением воды) распадаются до свободных А., играющих роль мономеров в полимерной белковой молекуле. При биосинтезе белка порядок, последовательность расположения А. задаются генетическим кодом (См.
Генетический код)
, записанным в химической структуре дезоксирибонуклеиновой кислоты. 20 важнейших А., входящих в состав белков, отвечают общей формуле RCH(NH
2)COOH и относятся к α-А. В природе встречаются и β-А., RCH(NH
2)CH
2COOH, например β-аланин CH
2NH
2CH
2COOH, входящий в состав пантотеновой кислоты. А. могут содержать одну NH
2-группу и одну СООН-группу (моноаминокарбоновые кислоты), одну NH
2-группу и две СООН-группы (моноаминодикарбоновые кислоты), две NH
2-группы и одну СООН-группу (диаминомонокарбоновые кислоты).
Моноаминокарбоновые кислоты:
Глицин - NH2CH2COOH
Аланин - CH3CH (NH2) COOH
Цистеин - CH2(SH)CH(NH2)COOH
Метионин - CH2 (SCH3) CH2CH (NH2) COOH
Валин-(СН3)2СНСН(МН2)СООН и др.
Моноаминодикарбоновые кислоты:
Аспарагиновая - HOOC CH2CH (NH2) COOH
Глутаминовая - HOOC (CH2)2CH (NH2) COOH
Диаминомонокарбоновые кислоты:
Лизин - NH2CH2(CH3)2CH(NH2)COOH
Аргинин - NH2C(=NH)NH(CH2)3CH(NH2)COOH и др.
А. - бесцветные кристаллические вещества, растворимые в воде;
tпл 220-315°С. Высокая температура плавления А. связана с тем, что их молекулы имеют структуру главным образом амфотерных (двузарядных) ионов. Например, строение простейшей А. -
Глицина
- можно выразить формулой
(а не NH
2CH
2COOH).
Все природные А., кроме глицина, содержат асимметричные атомы углерода, существуют в оптически активных модификациях и, как правило, относятся к L-ряду. А. D-ряда содержатся только в некоторых антибиотиках и в оболочках бактерий.
Многие растения и бактерии могут синтезировать все необходимые им А. из простых неорганических соединений. Большинство А. синтезируются в теле человека и животных из обычных безазотистых продуктов обмена веществ и усвояемого азота. Однако 8 А. (валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин) являются незаменимыми, т. е. не могут синтезироваться в организме животных и человека, и должны доставляться с пищей. Суточная потребность взрослого человека в каждой из незаменимых А. составляет в среднем около 1
г. При недостатке этих А. (чаще триптофана, лизина, метионина) или в случае отсутствия в пище хотя бы одной из них невозможен синтез белков и многих др. биологически важных веществ, необходимых для жизни. Гистидин и аргинин синтезируются в животном организме, но лишь в ограниченной, иногда недостаточной, мере. Цистеин и тирозин образуются лишь из своих предшественников - соответственно метионина и фенилаланина - и могут стать незаменимыми при недостатке этих А. Некоторые А. могут синтезироваться в животном организме из безазотистых предшественников при помощи процесса переаминирования (См.
Переаминирование)
, т. е. переноса аминогруппы с одной А. на др. В организме А. постоянно используются для синтеза и ресинтеза белков и др. веществ - гормонов, аминов, алкалоидов, коферментов, пигментов и др. Избыток А. подвергается распаду до конечных продуктов обмена (у человека и млекопитающих до мочевины, двуокиси углерода и воды), при котором выделяется энергия, необходимая организму для процессов жизнедеятельности. Промежуточным этапом такого распада является обычно
Дезаминирование (чаще всего окислительное).
К числу производных А., представляющих большой практический интерес, относится лактам ω-аминокапроновой кислоты (см.
Капролактам)
- исходный продукт производства капрона.
Известно много методов синтеза А., например действие аммиака на галогензамещённые карбоновые кислоты:
RCHCICOOH+2NH3 → RCHNH2COOH + NH4CI,
восстановление оксимов или гидразонов, кето- или альдегидокислот:
RC(= NOH)COOH → RCHNH2COOH
и др. Некоторые А. выделяют из продуктов гидролиза богатых ими белков методом адсорбции на ионообменных смолах; так выделяют глутаминовую кислоту из казеина и клейковины злаков; тирозин - из фиброина шёлка;
Аргинин - из желатины;
Гистидин из белков крови. Некоторые А. производят синтетически, например метионин, лизин и глутаминовую кислоту. А. получают в больших количествах также микробиологическим синтезом. Поступление в организм незаменимых А. определяется количеством и аминокислотным составом пищевых белков. Это следует учитывать для организации правильного общественного питания и составления рационов для разных возрастных и профессиональных групп населения. Потребность в пищевом белке может быть полностью покрыта за счёт смеси А. Этим пользуются в лечебном питании.
А. применяют в медицине: для парентерального питания больных (т. е. минуя желудочно-кишечный тракт) с заболеваниями пищеварительных и др. органов, а также для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно-психических заболеваниях (глутаминовая кислота и т. п.); в животноводстве и ветеринарии - для питания (см. ниже) и лечения животных, а также в микробиологической, медицинской и пищевой промышленности.
Изучение аминокислотного состава белков и обмена А. проводят рядом цветных реакций, например нингидриновой реакцией (См.
Нингидриновая реакция)
, а также методами хроматографии (См.
Хроматография) и с помощью специальных автоматических приборов - анализаторов А.
А. в кормлении с.-х. животных. Рационы с.-х. животных должны содержать все необходимые организму А., особенно незаменимые, поэтому при организации кормления в настоящее время стали учитывать в кормах не только общее количество протеина, как было принято раньше, но и незаменимых А. Потребность в А. у разных видов животных неодинакова. У жвачных животных микрофлора преджелудков способна синтезировать все необходимые организму А. из аммиака, выделяющегося при распаде белка или небелковых азотистых соединений, например мочевины (См.
Мочевина)
. Нормирования А. для этих животных не проводят. Однако с целью пополнения рациона животных небелковыми азотистыми веществами применяют мочевину. Молодняк жвачных, у которого ещё недостаточно развиты преджелудки, испытывает некоторую потребность в незаменимых А. Рационы свиней и птицы обязательно балансируют по содержанию А. С этой целью подбирают корма, дополняющие друг друга по аминокислотному составу, а также используют синтетические А., выпускаемые промышленностью. Синтетические А. скармливают в смеси с концентратами; целесообразнее добавлять их в комбикорма промышленного изготовления. Избыток А. отрицательно влияет на организм животных.
Лит.: Майстер А., Биохимия аминокислот, пер. с англ.,М., 1961; Аминокислотное питание свиней и птицы, М., 1963; Збарский Б. И., Иванов И. И., Мардашев С. P., Биологическая химия, 4 изд., Л., 1965; Попов И. С., Аминокислотный состав кормов, 2 изд., М., 1965; Обмен аминокислот. Материалы Всесоюзной конференции [13-17 окт. 1965], Тбилиси, 1967; Кретович В. Л., Основы биохимии растений, 4 изд., М., 1964.
И. Б. Збарский, Я. Ф. Комиссаров.